|  Help  |  About  |  Contact Us

Publication : Opposing actions of Stat1 and Stat6 on IL-13-induced up-regulation of early growth response-1 and platelet-derived growth factor ligands in pulmonary fibroblasts.

First Author  Ingram JL Year  2006
Journal  J Immunol Volume  177
Issue  6 Pages  4141-8
PubMed ID  16951379 Mgi Jnum  J:138041
Mgi Id  MGI:3804108 Doi  10.4049/jimmunol.177.6.4141
Citation  Ingram JL, et al. (2006) Opposing actions of Stat1 and Stat6 on IL-13-induced up-regulation of early growth response-1 and platelet-derived growth factor ligands in pulmonary fibroblasts. J Immunol 177(6):4141-8
abstractText  IL-13 is a key cytokine involved in airway remodeling in asthma. We previously reported that IL-13 stimulated the mitogenesis of lung fibroblasts via platelet-derived growth factor (PDGF)-AA. In this report, we show that IL-13 increases PDGF-A and PDGF-C mRNA levels through a dual intracellular cascade that requires coactivation of Stat6 and Stat1 to impact transcriptional regulation of the early growth response (Egr)-1 gene, which then drives PDGF expression. Increased levels of PDGF-AA and PDGF-CC protein were observed in vivo in the airways of IL-13 transgenic mice. IL-13 up-regulated PDGF-A and PDGF-C mRNA levels in lung fibroblasts isolated from three different background strains of mice. However, IL-13-induced PDGF-A and PDGF-C mRNA levels were significantly reduced in Stat6-deficient (Stat6(-/-)) fibroblasts as compared with wild-type Stat6(+/+) fibroblasts. In contrast, IL-13-induced PDGF-A and PDGF-C mRNAs were enhanced in Stat1(-/-) fibroblasts as compared with Stat1(+/+) fibroblasts. IL-13 did not up-regulate PDGF-A or PDGF-C mRNA levels in Egr-1(-/-) fibroblasts. Moreover, IL-13 did not increase Egr-1 mRNA and protein levels in Stat6(-/-) fibroblasts and yet enhanced Egr-1 mRNA and protein levels in Stat1(-/-) fibroblasts. Our findings support the hypothesis that Stat6 and Stat1 exert stimulatory and inhibitory effects on Egr-1 and PDGF ligand mRNA transcription, respectively. This novel mechanism could aid in identifying molecular targets for the treatment of chronic airway remodeling and fibrosis in asthma.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

13 Bio Entities

Trail: Publication

0 Expression