|  Help  |  About  |  Contact Us

Publication : Activity-induced MEMRI cannot detect functional brain anomalies in the APPxPS1-Ki mouse model of Alzheimer's disease.

First Author  Androuin A Year  2019
Journal  Sci Rep Volume  9
Issue  1 Pages  1140
PubMed ID  30718666 Mgi Jnum  J:275902
Mgi Id  MGI:6304904 Doi  10.1038/s41598-018-37980-y
Citation  Androuin A, et al. (2019) Activity-induced MEMRI cannot detect functional brain anomalies in the APPxPS1-Ki mouse model of Alzheimer's disease. Sci Rep 9(1):1140
abstractText  Alzheimer's disease (AD) is the most common cause of dementia. Aside neuropathological lesions, abnormal neuronal activity and brain metabolism are part of the core symptoms of the disease. Activity-induced Manganese-Enhanced Magnetic Resonance Imaging (MEMRI) has been proposed as a powerful approach to visualize evoked brain activity in rodents. Here, we evaluated the relevance of MEMRI in measuring neuronal (dys-)function in the APPxPS1 knocked-in (KI) mouse model of AD. Brain anomalies were firstly demonstrated in APPxPS1-Ki mice using cognitive testing (memory impairment) and histological mapping of immediate early gene products (decreased density of fos-positive neurons). Paradoxically, MEMRI analyses were not able to confirm the occurrence of neuronal hypoactivities in vivo. We then performed a neuropathological analysis that highlighted an abnormal increased permeability of the blood-brain barrier (BBB) in APPxPS1-Ki mice. We hypothesized that diffuse weakening of the BBB results in an uncontrolled diffusion of the MR contrast agent and a lack of correlation between manganese accumulation and neuronal activity. These results bring to light a limitation of the activity-induced MEMRI approach when applied to the APPxPS1-Ki mouse model as well as other mouse models harboring a compromised BBB.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression