|  Help  |  About  |  Contact Us

Publication : Antitumor effects of a combined 5-aza-2'deoxycytidine and valproic acid treatment on rhabdomyosarcoma and medulloblastoma in Ptch mutant mice.

First Author  Ecke I Year  2009
Journal  Cancer Res Volume  69
Issue  3 Pages  887-95
PubMed ID  19155313 Mgi Jnum  J:144974
Mgi Id  MGI:3833034 Doi  10.1158/0008-5472.CAN-08-0946
Citation  Ecke I, et al. (2009) Antitumor effects of a combined 5-aza-2'deoxycytidine and valproic acid treatment on rhabdomyosarcoma and medulloblastoma in Ptch mutant mice. Cancer Res 69(3):887-95
abstractText  Patched (Ptch) heterozygous mice develop medulloblastoma (MB) and rhabdomyosarcoma (RMS) resembling the corresponding human tumors. We have previously shown that epigenetic silencing of the intact Ptch allele contributes to tumor formation in this model. Here, we investigated whether targeting of epigenetic silencing mechanisms could be useful in the treatment of Ptch-associated cancers. A reduction of endogenous DNA methyltransferase1 (Dnmt1) activity significantly reduced tumor incidence in heterozygous Ptch knockout mice. A combined treatment with the Dnmt inhibitor 5-aza-2'deoxycytidine (5-aza-dC) and the histone deacetlyase (HDAC) inhibitor valproic acid (VPA) efficiently prevented MB and RMS formation, whereas monotherapies with either drug were less effective. Wild-type Ptch expression was efficiently reactivated in tumors by 5-aza-dC/VPA combination therapy. This was associated with reduced methylation of the Ptch promoter and induction of histone hyperacetylation suggesting inhibition of HDACs in vivo. However, the treatment was not effective in clinically overt, advanced stage tumors. This is a first in vivo demonstration that targeting of Dnmt and HDAC activities is highly effective in preventing formation of Ptch-associated tumors. The results suggest a novel clinical strategy for consolidation therapy of corresponding tumors in humans after completion of conventional treatment. Our data also suggest that epigenetic therapy may be less effective in treating advanced stages of tumors, at least in this tumor model.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression