|  Help  |  About  |  Contact Us

Publication : Cheating by type 3 secretion system-negative Pseudomonas aeruginosa during pulmonary infection.

First Author  Czechowska K Year  2014
Journal  Proc Natl Acad Sci U S A Volume  111
Issue  21 Pages  7801-6
PubMed ID  24821799 Mgi Jnum  J:211027
Mgi Id  MGI:5573050 Doi  10.1073/pnas.1400782111
Citation  Czechowska K, et al. (2014) Cheating by type 3 secretion system-negative Pseudomonas aeruginosa during pulmonary infection. Proc Natl Acad Sci U S A 111(21):7801-6
abstractText  The opportunistic pathogen Pseudomonas aeruginosa expresses a type 3 secretion system (T3SS) strongly associated with bacterial virulence in murine models and human patients. T3SS effectors target host innate immune mechanisms, and T3SS-defective mutants are cleared more efficiently than T3SS-positive bacteria by an immunocompetent host. Nonetheless, T3SS-negative isolates are recovered from many patients with documented P. aeruginosa infections, leading us to test whether T3SS-negative strains could have a selective advantage during in vivo infection. Mice were infected with mixtures of T3SS-positive WT P. aeruginosa plus isogenic T3SS-OFF or constitutively T3SS-ON mutants. Relative fitness of bacteria in this acute pneumonia model was reflected by the competitive index of mutants relative to WT. T3SS-OFF strains outcompeted WT PA103 in vivo, whereas a T3SS-ON mutant showed decreased fitness compared with WT. In vitro growth rates of WT and T3SS-OFF bacteria were determined under T3SS-inducing conditions and did not differ significantly. Increased fitness of T3SS-OFF bacteria was no longer observed at high ratios of T3SS-OFF to WT, a feature characteristic of bacterial cheaters. Cheating by T3SS-OFF bacteria occurred only when T3SS-positive bacteria expressed the phospholipase A2 effector Exotoxin U (ExoU). T3SS-OFF bacteria showed no fitness advantage in competition experiments carried out in immunodeficient MyD88-knockout mice or in neutrophil-depleted animals. Our findings indicate that T3SS-negative isolates benefit from the public good provided by ExoU-mediated killing of recruited innate immune cells. Whether this transient increase in fitness observed for T3SS-negative strains in mice contributes to the observed persistence of T3SS-negative isolates in humans is of ongoing interest.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression