|  Help  |  About  |  Contact Us

Publication : Arsenic induces NAD(P)H-quinone oxidoreductase I by disrupting the Nrf2 x Keap1 x Cul3 complex and recruiting Nrf2 x Maf to the antioxidant response element enhancer.

First Author  He X Year  2006
Journal  J Biol Chem Volume  281
Issue  33 Pages  23620-31
PubMed ID  16785233 Mgi Jnum  J:116771
Mgi Id  MGI:3695005 Doi  10.1074/jbc.M604120200
Citation  He X, et al. (2006) Arsenic induces NAD(P)H-quinone oxidoreductase I by disrupting the Nrf2 x Keap1 x Cul3 complex and recruiting Nrf2 x Maf to the antioxidant response element enhancer. J Biol Chem 281(33):23620-31
abstractText  The ubiquitous toxic metalloid arsenic elicits pleiotropic adverse and adaptive responses in mammalian species. The biological targets of arsenic are largely unknown at present. We analyzed the signaling pathway for induction of detoxification gene NAD(P)H-quinone oxidoreductase (Nqo1) by arsenic. Genetic and biochemical evidence revealed that induction required cap 'n' collar basic leucine zipper transcription factor Nrf2 and the antioxidant response element (ARE) of Nqo1. Arsenic stabilized Nrf2 protein, extending the t(1/2) of Nrf2 from 21 to 200 min by inhibiting the Keap1 x Cul3-dependent ubiquitination and proteasomal turnover of Nrf2. Arsenic markedly inhibited the ubiquitination of Nrf2 but did not disrupt the Nrf2 x Keap1 x Cul3 association in the cytoplasm. In the nucleus, arsenic, but not phenolic antioxidant tert-butylhydroquinone, dissociated Nrf2 from Keap1 and Cul3 followed by dimerization of Nrf2 with a Maf protein (Maf G/Maf K). Chromatin immunoprecipitation demonstrated that Nrf2 and Maf associated with the endogenous Nqo1 ARE enhancer constitutively. Arsenic substantially increased the ARE occupancy by Nrf2 and Maf. In addition, Keap1 was shown to be ubiquitinated in the cytoplasm and deubiquitinated in the nucleus in the presence of arsenic without changing the protein level, implicating nuclear-cytoplasmic recycling of Keap1. Our data reveal that arsenic activates the Nrf2/Keap1 signaling pathway through a distinct mechanism from that by antioxidants and suggest an 'on-switch' model of Nqo1 transcription in which the binding of Nrf2 x Maf to ARE controls both the basal and inducible expression of Nqo1.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Authors

5 Bio Entities

Trail: Publication

0 Expression