|  Help  |  About  |  Contact Us

Publication : Targeting miR-181a/b in retinitis pigmentosa: implications for disease progression and therapy.

First Author  Costa BLD Year  2024
Journal  Cell Biosci Volume  14
Issue  1 Pages  64
PubMed ID  38773556 Mgi Jnum  J:358629
Mgi Id  MGI:7782696 Doi  10.1186/s13578-024-01243-3
Citation  Costa BLD, et al. (2024) Targeting miR-181a/b in retinitis pigmentosa: implications for disease progression and therapy. Cell Biosci 14(1):64
abstractText  BACKGROUND: Retinitis pigmentosa (RP) is a genetically heterogeneous group of degenerative disorders causing progressive vision loss due to photoreceptor death. RP affects other retinal cells, including the retinal pigment epithelium (RPE). MicroRNAs (miRs) are implicated in RP pathogenesis, and downregulating miR-181a/b has shown therapeutic benefit in RP mouse models by improving mitochondrial function. This study investigates the expression profile of miR-181a/b in RPE cells and the neural retina during RP disease progression. We also evaluate how miR-181a/b downregulation, by knocking out miR-181a/b-1 cluster in RPE cells, confers therapeutic efficacy in an RP mouse model and explore the mechanisms underlying this process. RESULTS: Our findings reveal distinct expression profiles, with downregulated miR-181a/b in RPE cells suggesting a protective response and upregulated miR-181a/b in the neural retina indicating a role in disease progression. We found that miR-181a/b-2, encoded in a separate genomic cluster, compensates for miR-181a/b-1 ablation in RPE cells at late time points. The transient downregulation of miR-181a/b in RPE cells at post-natal week 6 (PW6) led to improved RPE morphology, retarded photoreceptor degeneration and decreased RPE aerobic glycolysis. CONCLUSIONS: Our study elucidates the underlying mechanisms associated with the therapeutic modulation of miR-181a/b, providing insights into the metabolic processes linked to its RPE-specific downregulation. Our data further highlights the impact of compensatory regulation between miR clusters with implications for the development of miR-based therapeutics.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

Trail: Publication

0 Expression