|  Help  |  About  |  Contact Us

Publication : Abnormalities in uridine homeostatic regulation and pyrimidine nucleotide metabolism as a consequence of the deletion of the uridine phosphorylase gene.

First Author  Cao D Year  2005
Journal  J Biol Chem Volume  280
Issue  22 Pages  21169-75
PubMed ID  15772079 Mgi Jnum  J:99912
Mgi Id  MGI:3584214 Doi  10.1074/jbc.M412343200
Citation  Cao D, et al. (2005) Abnormalities in uridine homeostatic regulation and pyrimidine nucleotide metabolism as a consequence of the deletion of the uridine phosphorylase gene. J Biol Chem 280(22):21169-75
abstractText  We report in the present study the critical role of uridine phosphorylase (UPase) in uridine homeostatic regulation and pyrimidine nucleotide metabolism, employing newly developed UPase-/- mice. Our data demonstrate that the abrogation of UPase activity led to greater than a 6-fold increase in uridine concentrations in plasma, a 5-6-fold increase in lung and gut, and a 2-3-fold increase in liver and kidney, as compared with wild type mice. Urine uridine levels increased 24-fold normal in UPase-/- mice. Uridine half-life and the plasma retention of pharmacological doses of uridine were significantly prolonged. Further, in these UPase-/- mice, abnormal uridine metabolism led to disorders of various nucleotide metabolisms. In the liver, gut, kidney, and lung of UPase-/- mice, total uridine ribonucleotide concentrations increased 2-3 times as compared with control mice. Cytidine ribonucleotides and adenosine and guanosine ribonucleotides also increased, although to a lesser extent, in these organs. Most significant deoxyribonucleotide changes were present in the gut and lung of UPase-/- mice. In these tissues, dTTP concentration increased more than 4-fold normal, and dCTP, dGTP, and dATP concentrations rose 1-2 times normal. In kidney, dTTP concentration increased 2-fold normal, and dCTP and dGTP concentrations rose less than 1-fold normal. In addition, the accumulated uridine in plasma and tissues efficiently reduced 5-fluorouracil host toxicity and altered the anesthetic effect of pentobarbital. These data indicate that UPase is a critical enzyme in the regulation of uridine homeostasis and pyrimidine nucleotide metabolism, and 5-fluorouracil activity.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression