|  Help  |  About  |  Contact Us

Publication : A quantitative microscopic approach to predict local recurrence based on in vivo intraoperative imaging of sarcoma tumor margins.

First Author  Mueller JL Year  2015
Journal  Int J Cancer Volume  137
Issue  10 Pages  2403-12
PubMed ID  25994353 Mgi Jnum  J:224783
Mgi Id  MGI:5689066 Doi  10.1002/ijc.29611
Citation  Mueller JL, et al. (2015) A quantitative microscopic approach to predict local recurrence based on in vivo intraoperative imaging of sarcoma tumor margins. Int J Cancer 137(10):2403-12
abstractText  The goal of resection of soft tissue sarcomas located in the extremity is to preserve limb function while completely excising the tumor with a margin of normal tissue. With surgery alone, one-third of patients with soft tissue sarcoma of the extremity will have local recurrence due to microscopic residual disease in the tumor bed. Currently, a limited number of intraoperative pathology-based techniques are used to assess margin status; however, few have been widely adopted due to sampling error and time constraints. To aid in intraoperative diagnosis, we developed a quantitative optical microscopy toolbox, which includes acriflavine staining, fluorescence microscopy, and analytic techniques called sparse component analysis and circle transform to yield quantitative diagnosis of tumor margins. A series of variables were quantified from images of resected primary sarcomas and used to optimize a multivariate model. The sensitivity and specificity for differentiating positive from negative ex vivo resected tumor margins was 82 and 75%. The utility of this approach was tested by imaging the in vivo tumor cavities from 34 mice after resection of a sarcoma with local recurrence as a bench mark. When applied prospectively to images from the tumor cavity, the sensitivity and specificity for differentiating local recurrence was 78 and 82%. For comparison, if pathology was used to predict local recurrence in this data set, it would achieve a sensitivity of 29% and a specificity of 71%. These results indicate a robust approach for detecting microscopic residual disease, which is an effective predictor of local recurrence.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression