|  Help  |  About  |  Contact Us

Publication : Evolutionary Gain of Dbx1 Expression Drives Subplate Identity in the Cerebral Cortex.

First Author  Arai Y Year  2019
Journal  Cell Rep Volume  29
Issue  3 Pages  645-658.e5
PubMed ID  31618633 Mgi Jnum  J:293296
Mgi Id  MGI:6452557 Doi  10.1016/j.celrep.2019.09.007
Citation  Arai Y, et al. (2019) Evolutionary Gain of Dbx1 Expression Drives Subplate Identity in the Cerebral Cortex. Cell Rep 29(3):645-658.e5
abstractText  Changes in transcriptional regulation through cis-regulatory elements are thought to drive brain evolution. However, how this impacts the identity of primate cortical neurons is still unresolved. Here, we show that primate-specific cis-regulatory sequences upstream of the Dbx1 gene promote human-like expression in the mouse embryonic cerebral cortex, and this imparts cell identity. Indeed, while Dbx1 is expressed in highly restricted cortical progenitors in the mouse ventral pallium, it is maintained in neurons in primates. Phenocopy of the primate-like Dbx1 expression in mouse cortical progenitors induces ectopic Cajal-Retzius and subplate (SP) neurons, which are transient populations playing crucial roles in cortical development. A conditional expression solely in neurons uncouples mitotic and postmitotic activities of Dbx1 and exclusively promotes a SP-like fate. Our results highlight how transcriptional changes of a single fate determinant in postmitotic cells may contribute to the expansion of neuronal diversity during cortical evolution.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

Trail: Publication

0 Expression