|  Help  |  About  |  Contact Us

Publication : Genetic control of glycolipid expression.

First Author  Yamakawa T Year  1986
Journal  Chem Phys Lipids Volume  42
Issue  1-3 Pages  75-90
PubMed ID  3103940 Mgi Jnum  J:8622
Mgi Id  MGI:57087 Doi  10.1016/0009-3084(86)90044-7
Citation  Yamakawa T, et al. (1986) Genetic control of glycolipid expression. Chem Phys Lipids 42(1-3):75-90
abstractText  A polymorphic variation of sialic acid species of sialosyllactosylceramide was found in dog erythrocytes. The analysis of the glycolipids in the erythrocytes of the individual dogs in a family of a Japanese breed of dog, Shiba-Inu, showed that the expression of sialosyllactosylceramide containing N-glycolylneuraminic acid was an autosomal dominant trait over the expression of that containing N-acetylneuraminic acid. Polymorphic variations of major liver gangliosides were also found in various strains of inbred mice. The strains were classified into three groups; the first group possessed only II3 NeuGc-LacCer, the second group possessed II3NeuGc-GgOse3Cer in addition to II3NeuGc-LacCer and the third group possessed II3NeuGc-GgOse4Cer and II3NeuGc,IV3NeuGc-GgOse4Cer as well as the above two gangliosides. By subjecting mice of these three groups to genetic analysis, the strain of the first group (WHT/Ht mice) was demonstrated to be a recessive homozygote which had a single autosomal defective gene making it unable to express N-acetylgalactosaminyltransferase activity to produce II3NeuGc-GgOse3Cer. The strains of the second group (BALB/c and C57BL/10 mice) were also demonstrated to be recessive homozygotes which had a single autosomal defective gene making them unable to express high enough level of galactosyltransferase activity to produce II3NeuGc-GgOse4Cer. By the analysis of gangliosides and the enzyme activity of H-2 congenic mice and mice produced by a mating, this defective gene controlling the expression of II3NeuGc-GgOse4-Cer through the regulation of the transferase activity was demonstrated to be linked to H-2 complex on chromosome 17.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression