|  Help  |  About  |  Contact Us

Publication : Neurogenin3 delineates the earliest stages of spermatogenesis in the mouse testis.

First Author  Yoshida S Year  2004
Journal  Dev Biol Volume  269
Issue  2 Pages  447-58
PubMed ID  15110712 Mgi Jnum  J:90641
Mgi Id  MGI:3044329 Doi  10.1016/j.ydbio.2004.01.036
Citation  Yoshida S, et al. (2004) Neurogenin3 delineates the earliest stages of spermatogenesis in the mouse testis. Dev Biol 269(2):447-58
abstractText  In mammalian testis, a typical stem cell system ensures continuous spermatozoa production. Lines of experiments have demonstrated that stem cell activity resides in the most primitive small subset of germ cells, that is, A(s) (A(single)), A(pr) (A(paired)), and A(al) (A(aligned)) spermatogonia, also collectively called undifferentiated spermatogonia. However, their cellular or molecular nature is largely to be elucidated because a gene that is specifically expressed in these cells has not yet been identified, which makes it difficult to study them. In this study, we demonstrate that a class B basic helix-loop-helix (bHLH) transcription factor neurogenin3 (ngn3) is expressed specifically in A(s), A(pr), and A(al) spermatogonia because ngn3 is expressed in c-Kit negative spermatogonia throughout the seminiferous cycle, and transgenic labeling with GFP revealed connection of 1, 2, 4, 8, 16, or 32 ngn3-positive cells via intercellular bridges. ngn3 is first expressed at the prepubertal stage in c-Kit negative prespermatogonia. Lineage tracing, using the Cre-loxP system, demonstrates that ngn3-positive germ cells give rise to eventually all the spermatogenesis in mature testis. To our knowledge, ngn3 is the first reported gene that delineates these earliest stages of spermatogenesis. Considering its molecular nature, ngn3 could be involved in their differentiation control. Moreover, visualization with GFP and targeting expression of exogenous genes are valuable tools to investigate the mammalian spermatogenic stem cell system.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

16 Bio Entities

Trail: Publication

0 Expression