|  Help  |  About  |  Contact Us

Publication : PTPN2 links colonic and joint inflammation in experimental autoimmune arthritis.

First Author  Hsieh WC Year  2020
Journal  JCI Insight Volume  5
Issue  20 PubMed ID  33055428
Mgi Jnum  J:301817 Mgi Id  MGI:6505340
Doi  10.1172/jci.insight.141868 Citation  Hsieh WC, et al. (2020) PTPN2 links colonic and joint inflammation in experimental autoimmune arthritis. JCI Insight 5(20)
abstractText  Loss-of-function variants of protein tyrosine phosphatase non-receptor type 2 (PTPN2) enhance risk of inflammatory bowel disease and rheumatoid arthritis; however, whether the association between PTPN2 and autoimmune arthritis depends on gut inflammation is unknown. Here we demonstrate that induction of subclinical intestinal inflammation exacerbates development of autoimmune arthritis in SKG mice. Ptpn2-haploinsufficient SKG mice - modeling human carriers of disease-associated variants of PTPN2 - displayed enhanced colitis-induced arthritis and joint accumulation of Tregs expressing RAR-related orphan receptor gammaT (RORgammat) - a gut-enriched Treg subset that can undergo conversion into FoxP3-IL-17+ arthritogenic exTregs. SKG colonic Tregs underwent higher conversion into arthritogenic exTregs when compared with peripheral Tregs, which was exacerbated by haploinsufficiency of Ptpn2. Ptpn2 haploinsufficiency led to selective joint accumulation of RORgammat-expressing Tregs expressing the colonic marker G protein-coupled receptor 15 (GPR15) in arthritic mice and selectively enhanced conversion of GPR15+ Tregs into exTregs in vitro and in vivo. Inducible Treg-specific haploinsufficiency of Ptpn2 enhanced colitis-induced SKG arthritis and led to specific joint accumulation of GPR15+ exTregs. Our data validate the SKG model for studies at the interface between intestinal and joint inflammation and suggest that arthritogenic variants of PTPN2 amplify the link between gut inflammation and arthritis through conversion of colonic Tregs into exTregs.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression