|  Help  |  About  |  Contact Us

Publication : Cholinergic modulation of neuronal excitability and recurrent excitation-inhibition in prefrontal cortex circuits: implications for gamma oscillations.

First Author  Pafundo DE Year  2013
Journal  J Physiol Volume  591
Issue  19 Pages  4725-48
PubMed ID  23818693 Mgi Jnum  J:214185
Mgi Id  MGI:5588537 Doi  10.1113/jphysiol.2013.253823
Citation  Pafundo DE, et al. (2013) Cholinergic modulation of neuronal excitability and recurrent excitation-inhibition in prefrontal cortex circuits: implications for gamma oscillations. J Physiol 591(Pt 19):4725-48
abstractText  Cholinergic neuromodulation in neocortical networks is required for gamma oscillatory activity associated with working memory and other cognitive processes. Importantly, the cholinergic agonist carbachol (CCh) induces gamma oscillations in vitro, via mechanisms that may be shared with in vivo gamma oscillations and that are consistent with the pyramidal interneuron network gamma (PING) model. In PING oscillations, pyramidal cells (PCs), driven by asynchronous excitatory input, recruit parvalbumin-positive fast-spiking interneurons (FSNs), which then synchronize the PCs via feedback inhibition. Whereas the PING model is favoured by current data, how cholinergic neuromodulation contributes to gamma oscillation production is poorly understood. We thus studied the effects of cholinergic modulation on circuit components of the PING model in mouse medial prefrontal cortex (mPFC) brain slices. CCh depolarized and evoked action potential firing in a fraction of PCs and increased excitatory synaptic input onto FSNs. In synaptically connected pairs, CCh reduced the short-term depression at FSN-PC and PC-FSN synapses, equalizing synaptic strength during repetitive presynaptic firing while simultaneously increasing the failure probability. Interestingly, when PCs or FSNs fired in response to gamma frequency oscillatory inputs, CCh increased the firing probability per cycle. Combined with the equalization of synaptic strength, an increase by CCh in the fraction of neurons recruited per oscillation cycle may support oscillatory synchrony of similar strength during relatively long oscillation episodes such as those observed during working memory tasks, suggesting a significant functional impact of cholinergic modulation of mPFC circuit components crucial for the PING model.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression