|  Help  |  About  |  Contact Us

Publication : Genomic structure and parent-of-origin-specific methylation of Peg1.

First Author  Lefebvre L Year  1997
Journal  Hum Mol Genet Volume  6
Issue  11 Pages  1907-15
PubMed ID  9302270 Mgi Jnum  J:44150
Mgi Id  MGI:1099402 Doi  10.1093/hmg/6.11.1907
Citation  Lefebvre L, et al. (1997) Genomic structure and parent-of-origin-specific methylation of Peg1. Hum Mol Genet 6(11):1907-15
abstractText  We previously identified Peg1/Mest as a novel paternally expressed gene in the developing mouse embryo. The human PEG1 gene was recently assigned to 7q32 and shown to be imprinted and paternally expressed. Therefore, PEG1 deficiency could participate in the aetiology of pre- and post-natal growth retardation associated with maternal uniparental disomy 7 in humans. We have now initiated the characterization of the Peg1 locus in order to identify and dissect cis-acting elements implicated in its imprinted monoallelic expression. The genomic structure of Peg1 as well as the DNA sequence of the 5'-end of the gene, including 2.4 kb of promoter sequences and covering the first 2 exons, have been determined. Important sequence elements, such as a CpG island spanning exon 1 and direct repeats, are identified and discussed. To address the role of epigenetic modifications in the imprinting of Peg1, a methylation analysis of the Peg1 gene is presented. Partially methylated cytosine residues in 13.5 d.p.c. embryos and undifferentiated ES cells were identified. Using embryos carrying a targetted mutation at the Peg1 locus, we show that this partial promoter methylation pattern reflects a strict parent-of-origin-specific differential methylation: the expressed paternal allele is unmethylated, whereas the silenced maternal allele is fully methylated at the CpG sites studied. That the gametes carry the epigenetic information necessary to lay down this allele-specific methylation pattern is suggested by analysis of DNA isolated from sperm and parthenogenetic embryos.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression