|  Help  |  About  |  Contact Us

Publication : SAM-pointed domain ETS factor mediates epithelial cell-intrinsic innate immune signaling during airway mucous metaplasia.

First Author  Korfhagen TR Year  2012
Journal  Proc Natl Acad Sci U S A Volume  109
Issue  41 Pages  16630-5
PubMed ID  23012424 Mgi Jnum  J:190327
Mgi Id  MGI:5448601 Doi  10.1073/pnas.1208092109
Citation  Korfhagen TR, et al. (2012) SAM-pointed domain ETS factor mediates epithelial cell-intrinsic innate immune signaling during airway mucous metaplasia. Proc Natl Acad Sci U S A 109(41):16630-5
abstractText  Airway mucus plays a critical role in clearing inhaled toxins, particles, and pathogens. Diverse toxic, inflammatory, and infectious insults induce airway mucus secretion and goblet cell metaplasia to preserve airway sterility and homeostasis. However, goblet cell metaplasia, mucus hypersecretion, and airway obstruction are integral features of inflammatory lung diseases, including asthma, chronic obstructive lung disease, and cystic fibrosis, which cause an immense burden of morbidity and mortality. These chronic lung diseases are united by susceptibility to microbial colonization and recurrent airway infections. Whether these twinned phenomena (mucous metaplasia, compromised host defenses) are causally related has been unclear. Here, we demonstrate that SAM pointed domain ETS factor (SPDEF) was induced by rhinoviral infection of primary human airway cells and that cytoplasmic activities of SPDEF, a transcriptional regulator of airway goblet cell metaplasia, inhibited Toll-like receptor (TLR) activation of epithelial cells. SPDEF bound to and inhibited activities of TLR signaling adapters, MyD88 and TRIF, inhibiting MyD88-induced cytokine production and TRIF-induced interferon beta production. Conditional expression of SPDEF in airway epithelial cells in vivo inhibited LPS-induced neutrophilic infiltration and bacterial clearance. SPDEF-mediated inhibition of both TLR and type I interferon signaling likely protects the lung against inflammatory damage when inciting stimuli are not eradicated. Present findings provide, at least in part, a molecular explanation for increased susceptibility to infection in lung diseases associated with mucous metaplasia and a mechanism by which patients with florid mucous metaplasia may tolerate microbial burdens that are usually associated with fulminant inflammatory disease in normal hosts.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression