|  Help  |  About  |  Contact Us

Publication : Structural requirements of human DNase II alpha for formation of the active enzyme: the role of the signal peptide, N-glycosylation, and disulphide bridging.

First Author  MacLea KS Year  2003
Journal  Biochem J Volume  371
Issue  Pt 3 Pages  867-76
PubMed ID  12558498 Mgi Jnum  J:89541
Mgi Id  MGI:3040668 Doi  10.1042/BJ20021875
Citation  MacLea KS, et al. (2003) Structural requirements of human DNase II alpha for formation of the active enzyme: the role of the signal peptide, N-glycosylation, and disulphide bridging. Biochem J 371(Pt 3):867-76
abstractText  DNase II alpha (EC 3.1.22.1) is an endonuclease, which is active at low pH, that cleaves double-stranded DNA to short 3'-phosphoryl oligonucleotides. Although its biochemistry is well understood, its structure-activity relationship has been largely unexamined. Recently, we demonstrated that active DNase II alpha consists of one contiguous polypeptide, heavily glycosylated, and containing at least one intrachain disulphide linkage [MacLea, Krieser and Eastman (2002) Biochem. Biophys. Res. Commun. 292, 415-421]. The present paper describes further work to examine the elements of DNase II alpha protein required for activity. Truncated forms and site-specific mutants were expressed in DNase II alpha-null mouse cells. Results indicate that the signal-peptide leader sequence is required for correct glycosylation and that N-glycosylation is important for formation of the active enzyme. Despite this, enzymic deglycosylation of wild-type protein with peptide N-glycosidase F reveals that glycosylation is not intrinsically required for DNase activity. DNase II alpha contains six evolutionarily conserved cysteine residues, and mutations in any one of these cysteines completely ablated enzymic activity, consistent with the importance of disulphide bridging in maintaining correct protein structure. We also demonstrate that a mutant form of DNase II alpha that lacks the purported active-site His(295) can still bind DNA, indicating that this histidine residue is not simply involved in DNA binding, but may have a direct role in catalysis. These results provide a more complete model of the DNase II alpha protein structure, which is important for three-dimensional structural analysis and for production of DNase II alpha as a potential protein therapeutic for cystic fibrosis or other disorders.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression