|  Help  |  About  |  Contact Us

Publication : Regulation of osteoclast differentiation and function by phosphate: potential role of osteoclasts in the skeletal abnormalities in hypophosphatemic conditions.

First Author  Hayashibara T Year  2007
Journal  J Bone Miner Res Volume  22
Issue  11 Pages  1743-51
PubMed ID  17638577 Mgi Jnum  J:141348
Mgi Id  MGI:3818144 Doi  10.1359/jbmr.070709
Citation  Hayashibara T, et al. (2007) Regulation of osteoclast differentiation and function by phosphate: potential role of osteoclasts in the skeletal abnormalities in hypophosphatemic conditions. J Bone Miner Res 22(11):1743-51
abstractText  Mice fed with a low Pi diet exhibited decreased osteoclast number. Hyp mice also showed decreased osteoclasts, and high Pi reversed it. Low Pi reduced osteoclast formation and bone resorption in vitro. Hypophosphatemia may suppress osteoclast differentiation/function, leading to skeletal abnormalities. INTRODUCTION: Skeletal abnormalities seen in hypophosphatemic disorders indicate a critical role of phosphate (Pi) in skeletogenesis. However, the role of osteoclasts in the pathogenesis of the disturbed skeletogenesis is unclear. MATERIALS AND METHODS: Mice fed with a low-Pi diet and Hyp mice that are characterized by hypophosphatemia and impaired osteogenesis were studied. Effects of Pi on osteoclast formation and bone resorption were also examined in vitro. RESULTS: Histomorphometric examination showed that mice on a low-Pi diet exhibited decreased osteoclast number. Furthermore, osteoclast number in Hyp mice was also decreased compared with wildtype (WT) mice. Of note, feeding of Hyp mice with high-Pi diet significantly reversed hypophosphatemia, improved disturbed osteogenesis, and increased osteoclast number. Osteoclast-like cell (OLC) formation and bone resorption in Hyp bone marrow cells was not different from WT bone marrow cells. On the other hand, OLC formation and bone resorption were decreased in conjunction with reduced mRNA expression of RANKL in WT bone marrow cells cultured in the medium containing low Pi (0.5 mM). Recombinant human matrix extracellular phosphoglycoprotein (MEPE), a candidate for phosphatonin, also decreased osteoclast formation, whereas fibroblast growth factor 23 (FGF23), another phosphatonin candidate, showed no effects. CONCLUSIONS: Our results suggest that Pi controls the differentiation and function of osteoclasts. These actions of Pi on osteoclasts may be associated with the pathogenesis of the skeletal abnormalities in hypophosphatemic disorders.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression