|  Help  |  About  |  Contact Us

Publication : Gene knockout or pharmacological inhibition of poly(ADP-ribose) polymerase-1 prevents lung inflammation in a murine model of asthma.

First Author  Boulares AH Year  2003
Journal  Am J Respir Cell Mol Biol Volume  28
Issue  3 Pages  322-9
PubMed ID  12594058 Mgi Jnum  J:94615
Mgi Id  MGI:3513609 Doi  10.1165/rcmb.2001-0015OC
Citation  Boulares AH, et al. (2003) Gene knockout or pharmacological inhibition of poly(ADP-ribose) polymerase-1 prevents lung inflammation in a murine model of asthma. Am J Respir Cell Mol Biol 28(3):322-9
abstractText  Airway inflammation is a central feature of asthma and chronic obstructive pulmonary disease. Reactive oxygen species (ROS) contribute to inflammation by damaging DNA, which, in turn, results in the activation of poly(ADP-ribose) polymerase-1 (PARP-1) and depletion of its substrate, nicotinamide adenine dinucleotide. Here we show that prevention of PARP-1 activation protects against both ROS-induced airway epithelial cell injury in vitro and airway inflammation in vivo. H(2)O(2) induced the generation of ROS, PARP-1 activation and concomitant nicotinamide adenine dinucleotide depletion, and release of lactate dehydrogenase in A549 human airway epithelial cells. These effects were blocked by the PARP-1 inhibitor 3-aminobenzamide (3-AB). Furthermore, 3-AB inhibited both activation of the proinflammatory transcription factor nuclear factor-kappaB and expression of the interleukin-8 gene induced by H(2)O(2) in these cells. In a murine model of allergen-induced asthma, 3-AB prevented airway inflammation elicited by ovalbumin. Moreover, PARP-1 knockout mice were resistant to such ovalbumin-induced inflammation. These protective effects were associated with an inhibition of expression of the inducible nitric oxide synthase. These results implicate PARP-1 activation in airway inflammation, and suggest this enzyme as a potential target for the development of new therapeutic strategies in the treatment of asthma as well as other respiratory disorders such as chronic obstructive pulmonary disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression