|  Help  |  About  |  Contact Us

Publication : In Vivo AAV-CRISPR/Cas9-Mediated Gene Editing Ameliorates Atherosclerosis in Familial Hypercholesterolemia.

First Author  Zhao H Year  2020
Journal  Circulation Volume  141
Issue  1 Pages  67-79
PubMed ID  31779484 Mgi Jnum  J:300122
Mgi Id  MGI:6491804 Doi  10.1161/CIRCULATIONAHA.119.042476
Citation  Zhao H, et al. (2020) In Vivo AAV-CRISPR/Cas9-Mediated Gene Editing Ameliorates Atherosclerosis in Familial Hypercholesterolemia. Circulation 141(1):67-79
abstractText  BACKGROUND: Mutations in low-density lipoprotein (LDL) receptor (LDLR) are one of the main causes of familial hypercholesterolemia, which induces atherosclerosis and has a high lifetime risk of cardiovascular disease. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system is an effective tool for gene editing to correct gene mutations and thus to ameliorate disease. METHODS: The goal of this work was to determine whether in vivo somatic cell gene editing through the CRISPR/Cas9 system delivered by adeno-associated virus (AAV) could treat familial hypercholesterolemia caused by the Ldlr mutant in a mouse model. We generated a nonsense point mutation mouse line, Ldlr(E208X), based on a relevant familial hypercholesterolemia-related gene mutation. The AAV-CRISPR/Cas9 was designed to correct the point mutation in the Ldlr gene in hepatocytes and was delivered subcutaneously into Ldlr(E208X) mice. RESULTS: We found that homogeneous Ldlr(E208X) mice (n=6) exhibited severe atherosclerotic phenotypes after a high-fat diet regimen and that the Ldlr mutation was corrected in a subset of hepatocytes after AAV-CRISPR/Cas9 treatment, with LDLR protein expression partially restored (n=6). Compared with the control groups (n=6 each group), the AAV-CRISPR/Cas9 with targeted single guide RNA group (n=6) had significant reductions in total cholesterol, total triglycerides, and LDL cholesterol in the serum, whereas the aorta had smaller atherosclerotic plaques and a lower degree of macrophage infiltration. CONCLUSIONS: Our work shows that in vivo AAV-CRISPR/Cas9-mediated Ldlr gene correction can partially rescue LDLR expression and effectively ameliorate atherosclerosis phenotypes in Ldlr mutants, providing a potential therapeutic approach for the treatment of patients with familial hypercholesterolemia.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression