|  Help  |  About  |  Contact Us

Publication : Bone histomorphometric and biomechanical abnormalities in mice homozygous for deletion of the dopamine transporter gene.

First Author  Bliziotes M Year  2000
Journal  Bone Volume  26
Issue  1 Pages  15-9
PubMed ID  10617152 Mgi Jnum  J:60085
Mgi Id  MGI:1352607 Doi  10.1016/s8756-3282(99)00232-x
Citation  Bliziotes M, et al. (2000) Bone histomorphometric and biomechanical abnormalities in mice homozygous for deletion of the dopamine transporter gene. Bone 26(1):15-9
abstractText  Dopamine (DA) has been reported to have effects on calcium and phosphorus metabolism. The dopamine transporter (DAT) is believed to control the temporal and spatial activity of released DA by rapid uptake of the neurotransmitter into presynaptic terminals. We have evaluated the histologic and biomechanical properties of the skeleton in mice homozygous for deletion of the DA transporter gene (DAT) to help delineate the role of DA in bone biology. We have demonstrated that DAT-/-mice have reduced bone mass and strength. DAT-/- animals had shorter femur length and dry weight. Ash calcium content of the femur was 32% lower in the DAT-/- mice than in the wild-type animals. Cancellous bone volume in the proximal tibial metaphysis was significantly lower in the DAT-/- animals (p < 0.04). There was a 32% reduction in trabecular thickness (p = NS). For the vertebrae, cancellous bone volume was again lower in the DAT-/- animals compared with wild-type as a consequence of increased trabecular spacing (p < 0.05) and reduced trabecular number (p < 0.05). Cortical thickness and bone area in the femoral diaphysis were reduced in the DAT-/-animals. The ultimate bending load (femoral strength) for the DAT-/- mice was 30% lower than the wild-type mice (p = 0.004). Thus, deletion of the DAT gene results in deficiencies in skeletal structure and integrity.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression