|  Help  |  About  |  Contact Us

Publication : Loss of the serine/threonine kinase fused results in postnatal growth defects and lethality due to progressive hydrocephalus.

First Author  Merchant M Year  2005
Journal  Mol Cell Biol Volume  25
Issue  16 Pages  7054-68
PubMed ID  16055717 Mgi Jnum  J:116391
Mgi Id  MGI:3694177 Doi  10.1128/MCB.25.16.7054-7068.2005
Citation  Merchant M, et al. (2005) Loss of the serine/threonine kinase fused results in postnatal growth defects and lethality due to progressive hydrocephalus. Mol Cell Biol 25(16):7054-68
abstractText  The Drosophila Fused (Fu) kinase is an integral component of the Hedgehog (Hh) pathway that helps promote Hh-dependent gene transcription. Vertebrate homologues of Fu function in the Hh pathway in vitro, suggesting that Fu is evolutionarily conserved. We have generated fused (stk36) knockout mice to address the in vivo function of the mouse Fu (mFu) homologue. fused knockouts develop normally, being born in Mendelian ratios, but fail to thrive within 2 weeks, displaying profound growth retardation with communicating hydrocephalus and early mortality. The fused gene is expressed highly in ependymal cells and the choroid plexus, tissues involved in the production and circulation of cerebral spinal fluid (CSF), suggesting that loss of mFu disrupts CSF homeostasis. Similarly, fused is highly expressed in the nasal epithelium, where fused knockouts display bilateral suppurative rhinitis. No obvious defects were observed in the development of organs where Hh signaling is required (limbs, face, bones, etc.). Specification of neuronal cell fates by Hh in the neural tube was normal in fused knockouts, and induction of Hh target genes in numerous tissues is not affected by the loss of mFu. Furthermore, stimulation of fused knockout cerebellar granule cells to proliferate with Sonic Hh revealed no defect in Hh signal transmission. These results show that the mFu homologue is not required for Hh signaling during embryonic development but is required for proper postnatal development, possibly by regulating the CSF homeostasis or ciliary function.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

20 Bio Entities

Trail: Publication

0 Expression