|  Help  |  About  |  Contact Us

Publication : Homeostatic Intrinsic Plasticity Is Functionally Altered in Fmr1 KO Cortical Neurons.

First Author  Bülow P Year  2019
Journal  Cell Rep Volume  26
Issue  6 Pages  1378-1388.e3
PubMed ID  30726724 Mgi Jnum  J:290874
Mgi Id  MGI:6432007 Doi  10.1016/j.celrep.2019.01.035
Citation  Bulow P, et al. (2019) Homeostatic Intrinsic Plasticity Is Functionally Altered in Fmr1 KO Cortical Neurons. Cell Rep 26(6):1378-1388.e3
abstractText  Cortical hyperexcitability is a hallmark of fragile X syndrome (FXS). In the Fmr1 knockout (KO) mouse model of FXS, cortical hyperexcitability is linked to sensory hypersensitivity and seizure susceptibility. It remains unclear why homeostatic mechanisms fail to prevent such activity. Homeostatic intrinsic plasticity (HIP) adjusts membrane excitability through regulation of ion channels to maintain activity levels following activity perturbation. Despite the critical role of HIP in the maturation of excitability, it has not been examined in FXS. Here, we demonstrate that HIP does not operate normally in a disease model, FXS. HIP was either lost or exaggerated in two distinct neuronal populations from Fmr1 KO cortical cultures. In addition, we have identified a mechanism for homeostatic intrinsic plasticity. Compromising HIP function during development could leave cortical neurons in the FXS nervous system vulnerable to hyperexcitability.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression