|  Help  |  About  |  Contact Us

Publication : Contributions of extracellular and intracellular Ca2+ to regulation of sperm motility: Release of intracellular stores can hyperactivate CatSper1 and CatSper2 null sperm.

First Author  Marquez B Year  2007
Journal  Dev Biol Volume  303
Issue  1 Pages  214-21
PubMed ID  17174296 Mgi Jnum  J:118812
Mgi Id  MGI:3700426 Doi  10.1016/j.ydbio.2006.11.007
Citation  Marquez B, et al. (2007) Contributions of extracellular and intracellular Ca2+ to regulation of sperm motility: Release of intracellular stores can hyperactivate CatSper1 and CatSper2 null sperm. Dev Biol 303(1):214-21
abstractText  In order to fertilize, mammalian sperm must hyperactivate. Hyperactivation is triggered by increased flagellar Ca(2+), which switches flagellar beating from a symmetrical to an asymmetrical pattern by increasing bending to one side. Thimerosal, which releases Ca(2+) from internal stores, induced hyperactivation in mouse sperm within seconds, even when extracellular Ca(2+) was buffered with BAPTA to approximately 30 nM. In sperm from CatSper1 or CatSper2 null mice, which lack functional flagellar alkaline-activated calcium currents, 50 microM thimerosal raised the flagellar bend amplitudes from abnormally low levels to normal pre-hyperactivated levels and, in 20-40% of sperm, induced hyperactivation. Addition of 1 mM Ni(2+) diminished the response. This suggests that intracellular Ca(2+) is abnormally low in the null sperm flagella. When intracellular Ca(2+) was reduced by BAPTA-AM in wild-type sperm, they exhibited flagellar beat patterns more closely resembling those of null sperm. Altogether, these results indicate that extracellular Ca(2+) is required to supplement store-released Ca(2+) to produce maximal and sustained hyperactivation and that CatSper1 and CatSper2 are key elements of the major Ca(2+) entry pathways that support not only hyperactivated motility but possibly also normal pre-hyperactivated motility.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

Trail: Publication

0 Expression