|  Help  |  About  |  Contact Us

Publication : Grb4 and GIT1 transduce ephrinB reverse signals modulating spine morphogenesis and synapse formation.

First Author  Segura I Year  2007
Journal  Nat Neurosci Volume  10
Issue  3 Pages  301-10
PubMed ID  17310244 Mgi Jnum  J:120748
Mgi Id  MGI:3707923 Doi  10.1038/nn1858
Citation  Segura I, et al. (2007) Grb4 and GIT1 transduce ephrinB reverse signals modulating spine morphogenesis and synapse formation. Nat Neurosci 10(3):301-10
abstractText  Dendritic spines are small protrusions emerging from dendrites that receive excitatory input. The process of spine morphogenesis occurs both in the developing brain and during synaptic plasticity. Molecules regulating the cytoskeleton are involved in spine formation and maintenance. Here we show that reverse signaling by the transmembrane ligands for Eph receptors, ephrinBs, is required for correct spine morphogenesis. The molecular mechanism underlying this function of ephrinBs involves the SH2 and SH3 domain-containing adaptor protein Grb4 and the G protein-coupled receptor kinase-interacting protein (GIT) 1. Grb4 binds by its SH2 domain to Tyr392 in the synaptic localization domain of GIT1. Phosphorylation of Tyr392 and the recruitment of GIT1 to synapses are regulated by ephrinB activation. Disruption of this pathway in cultured rat hippocampal neurons impairs spine morphogenesis and synapse formation. We thus show an important role for ephrinB reverse signaling in spine formation and have mapped the downstream pathway involved in this process.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

Trail: Publication

0 Expression