|  Help  |  About  |  Contact Us

Publication : CRTAM controls residency of gut CD4+CD8+ T cells in the steady state and maintenance of gut CD4+ Th17 during parasitic infection.

First Author  Cortez VS Year  2014
Journal  J Exp Med Volume  211
Issue  4 Pages  623-33
PubMed ID  24687959 Mgi Jnum  J:212409
Mgi Id  MGI:5581366 Doi  10.1084/jem.20130904
Citation  Cortez VS, et al. (2014) CRTAM controls residency of gut CD4+CD8+ T cells in the steady state and maintenance of gut CD4+ Th17 during parasitic infection. J Exp Med 211(4):623-33
abstractText  Retention of lymphocytes in the intestinal mucosa requires specialized chemokine receptors and adhesion molecules. We find that both CD4(+)CD8(+) and CD4(+) T cells in the intestinal epithelium, as well as CD8(+) T cells in the intestinal mucosa and mesenteric lymph nodes, express the cell adhesion molecule class I-restricted T cell-associated molecule (Crtam) upon activation, whereas the ligand of Crtam, cell adhesion molecule 1 (Cadm1), is expressed on gut CD103(+)DCs. Lack of Crtam-Cadm1 interactions in Crtam(-/-) and Cadm1(-/-) mice results in loss of CD4(+)CD8(+) T cells, which arise from mucosal CD4(+) T cells that acquire a CD8 lineage expression profile. After acute oral infection with Toxoplasma gondii, both WT and Crtam(-/-) mice mounted a robust TH1 response, but markedly fewer TH17 cells were present in the intestinal mucosa of Crtam(-/-) mice. The almost exclusive TH1 response in Crtam(-/-) mice resulted in more efficient control of intestinal T. gondii infection. Thus, Crtam-Cadm1 interactions have a major impact on the residency and maintenance of CD4(+)CD8(+) T cells in the gut mucosa in the steady state. During pathogenic infection, Crtam-Cadm1 interactions regulate the dynamic equilibrium between newly formed CD4(+) T cells and their retention in the gut, thereby shaping representation of disparate CD4(+) T cell subsets and the overall quality of the CD4(+) T cell response.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

19 Bio Entities

Trail: Publication

0 Expression