|  Help  |  About  |  Contact Us

Publication : The protein tyrosine phosphatase PTPN4/PTP-MEG1, an enzyme capable of dephosphorylating the TCR ITAMs and regulating NF-kappaB, is dispensable for T cell development and/or T cell effector functions.

First Author  Young JA Year  2008
Journal  Mol Immunol Volume  45
Issue  14 Pages  3756-66
PubMed ID  18614237 Mgi Jnum  J:138871
Mgi Id  MGI:3806743 Doi  10.1016/j.molimm.2008.05.023
Citation  Young JA, et al. (2008) The protein tyrosine phosphatase PTPN4/PTP-MEG1, an enzyme capable of dephosphorylating the TCR ITAMs and regulating NF-kappaB, is dispensable for T cell development and/or T cell effector functions. Mol Immunol 45(14):3756-66
abstractText  T cell receptor signaling processes are controlled by the integrated actions of families of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPases). Several distinct cytosolic protein tyrosine phosphatases have been described that are able to negatively regulate TCR signaling pathways, including SHP-1, SHP-2, PTPH1, and PEP. Using PTPase substrate-trapping mutants and wild type enzymes, we determined that PTPN4/PTP-MEG1, a PTPH1-family member, could complex and dephosphorylate the ITAMs of the TCR zeta subunit. In addition, the substrate-trapping derivative augmented basal and TCR-induced activation of NF-kappaB in T cells. To characterize the contribution of this PTPase in T cells, we developed PTPN4-deficient mice. T cell development and TCR signaling events were comparable between wild type and PTPN4-deficient animals. The magnitude and duration of TCR-regulated ITAM phosphorylation, as well as overall protein phosphorylation, was unaltered in the absence of PTPN4. Finally, Th1- and Th2-derived cytokines and in vivo immune responses to Listeria monocytogenes were equivalent between wild type and PTPN4-deficient mice. These findings suggest that additional PTPases are involved in controlling ITAM phosphorylations.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

12 Bio Entities

Trail: Publication

0 Expression