|  Help  |  About  |  Contact Us

Publication : OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia.

First Author  Ballatori N Year  2005
Journal  Hepatology Volume  42
Issue  6 Pages  1270-9
PubMed ID  16317684 Mgi Jnum  J:250040
Mgi Id  MGI:6101690 Doi  10.1002/hep.20961
Citation  Ballatori N, et al. (2005) OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 42(6):1270-9
abstractText  The cellular and subcellular localization and mechanism of transport of the heteromeric organic solute transporter (OST) OSTalpha-OSTbeta was examined in human and rodent epithelia. The two subunits of the transporter were expressed together in human small intestine, kidney, and liver, tissues that also express the apical sodium-dependent bile acid uptake transporter ASBT (SLC10A2). Indirect immunofluorescence microscopy localized OSTalpha and OSTbeta to the basolateral membrane of mouse, rat, and human ileal enterocytes, renal proximal tubular cells, and cholangiocytes. Transport in OSTalpha-OSTbeta-expressing Xenopus laevis oocytes was unaffected by depletion of intracellular adenosine triphosphate, or by changes in transmembrane Na(+), K(+), H(+), or Cl(-) concentration gradients. However, the oocytes demonstrated robust substrate efflux and trans-stimulation, indicating that transport occurs by facilitated diffusion. Madin Darby canine kidney cells coexpressing mouse Ostalpha and Ostbeta exhibited enhanced apical to basolateral transport of the major glycine and taurine conjugated bile acid species. In conclusion, the selective localization of OSTalpha and OSTbeta to the basolateral plasma membrane of epithelial cells responsible for bile acid and sterol reabsorption, the substrate selectivity of the transporter, and the facilitated diffusion transport mode collectively indicate that OSTalpha-OSTbeta is a key basolateral transporter for the reabsorption of these important steroid-derived molecules.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression