|  Help  |  About  |  Contact Us

Publication : Deficiency of the stress kinase p38alpha results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells.

First Author  Allen M Year  2000
Journal  J Exp Med Volume  191
Issue  5 Pages  859-70
PubMed ID  10704466 Mgi Jnum  J:60918
Mgi Id  MGI:1354086 Doi  10.1084/jem.191.5.859
Citation  Allen M, et al. (2000) Deficiency of the stress kinase p38alpha results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. J Exp Med 191(5):859-70
abstractText  The mitogen-activated protein (MAP) kinase p38 is a key component of stress response pathways and the target of cytokine-suppressing antiinflammatory drugs (CSAIDs). A genetic approach was employed to inactivate the gene encoding one p38 isoform, p38alpha. Mice null for the p38alpha allele die during embryonic development. p38alpha(1/)- embryonic stem (ES) cells grown in the presence of high neomycin concentrations demonstrated conversion of the wild-type allele to a targeted allele. p38alpha(-/)- ES cells lacked p38alpha protein and failed to activate MAP kinase-activated protein (MAPKAP) kinase 2 in response to chemical stress inducers. In contrast, p38alpha(1/+) ES cells and primary embryonic fibroblasts responded to stress stimuli and phosphorylated p38alpha, and activated MAPKAP kinase 2. After in vitro differentiation, both wild-type and p38alpha(-/)- ES cells yielded cells that expressed the interleukin 1 receptor (IL-1R). p38alpha(1/+) but not p38alpha(-/)- IL-1R-positive cells responded to IL-1 activation to produce IL-6. Comparison of chemical-induced apoptosis processes revealed no significant difference between the p38alpha(1/+) and p38alpha(-/)- ES cells. Therefore, these studies demonstrate that p38alpha is a major upstream activator of MAPKAP kinase 2 and a key component of the IL-1 signaling pathway. However, p38alpha does not serve an indispensable role in apoptosis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression