|  Help  |  About  |  Contact Us

Publication : Mild nephrogenic diabetes insipidus caused by Foxa1 deficiency.

First Author  Behr R Year  2004
Journal  J Biol Chem Volume  279
Issue  40 Pages  41936-41
PubMed ID  15252040 Mgi Jnum  J:93462
Mgi Id  MGI:3057084 Doi  10.1074/jbc.M403354200
Citation  Behr R, et al. (2004) Mild nephrogenic diabetes insipidus caused by Foxa1 deficiency. J Biol Chem 279(40):41936-41
abstractText  Foxa1 is a member of the winged helix family of transcription factors and is expressed in the collecting ducts of the kidney. We investigated its potential contribution to renal physiology in Foxa1-deficient mice on a defined genetic background. Foxa1(-/-) mice are dehydrated and exhibit electrolyte imbalance as evidenced by elevated hematocrit and plasma urea levels, hypernatremia, and hyperkalemia. This phenotype is the consequence of decreased urine osmolality secondary to renal vasopressin resistance. Mutations of the human genes encoding the vasopressin 2 receptor and aquaporin 2 cause nephrogenic diabetes insipidus; however, expression of these genes is maintained or increased, respectively, in Foxa1(-/-) mice. Likewise, expression of the genes encoding the Na-K-2Cl cotransporter (NKCC2), the potassium channel ROMK, the chloride channel CLCNKB, barttin (BSND), and the calcium-sensing receptor (CASR), each of which is important in sodium reabsorption in the loop of Henle, is maintained or even increased in Foxa1-deficient mice. Thus, we have shown that Foxa1(-/-) mice represent a new model of nephrogenic diabetes insipidus with unique molecular etiology, and we have identified the first transcription factor whose mutation leads to a defect in renal water homeostasis in vivo.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression