|  Help  |  About  |  Contact Us

Publication : Hmgb3 regulates the balance between hematopoietic stem cell self-renewal and differentiation.

First Author  Nemeth MJ Year  2006
Journal  Proc Natl Acad Sci U S A Volume  103
Issue  37 Pages  13783-8
PubMed ID  16945912 Mgi Jnum  J:113745
Mgi Id  MGI:3687604 Doi  10.1073/pnas.0604006103
Citation  Nemeth MJ, et al. (2006) Hmgb3 regulates the balance between hematopoietic stem cell self-renewal and differentiation. Proc Natl Acad Sci U S A 103(37):13783-8
abstractText  Hmgb3 is an X-linked member of a family of sequence-independent chromatin-binding proteins that is preferentially expressed in hematopoietic stem cells (HSC). Hmgb3-deficient mice (Hmgb3(-/Y)) contain normal numbers of HSCs, capable of self-renewal and hematopoietic repopulation, but fewer common lymphoid (CLP) and common myeloid progenitors (CMP). In this study, we tested the hypothesis that Hmgb3(-/Y) HSCs are biased toward self-renewal at the expense of progenitor production. Wild-type and Hmgb3(-/Y) CLPs and CMPs proliferate and differentiate equally in vitro, indicating that CLP and CMP function normally in Hmgb3(-/Y) mice. Hmgb3(-/Y) HSCs exhibit constitutive activation of the canonical Wnt signaling pathway, which regulates stem cell self-renewal. Increased Wnt signaling in Hmgb3(-/Y) HSCs corresponds to increased expression of Dvl1, a positive regulator of the canonical Wnt pathway. To induce hematopoietic stress and a subsequent response from HSCs, we treated Hmgb3(-/Y) mice with 5-fluorouracil. Hmgb3(-/Y) mice exhibit a faster recovery of functional HSCs after administration of 5-fluorouracil compared with wild-type mice, which may be due to the increased Wnt signaling. Furthermore, the recovery of HSC number in Hmgb3(-/Y) mice occurs more rapidly than CLP and CMP recovery. From these data, we propose a model in which Hmgb3 is required for the proper balance between HSC self-renewal and differentiation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

Trail: Publication

0 Expression