First Author | Yoshida K | Year | 2004 |
Journal | J Biol Chem | Volume | 279 |
Issue | 5 | Pages | 3573-7 |
PubMed ID | 14645240 | Mgi Jnum | J:128777 |
Mgi Id | MGI:3768009 | Doi | 10.1074/jbc.C300507200 |
Citation | Yoshida K, et al. (2004) Targeted disruption of the mouse 3-phosphoglycerate dehydrogenase gene causes severe neurodevelopmental defects and results in embryonic lethality. J Biol Chem 279(5):3573-7 |
abstractText | D-3-Phosphoglycerate dehydrogenase (Phgdh; EC 1.1.1.95) is the first committed enzyme of L-serine biosynthesis in the phosphorylated pathway. To determine the physiological importance of Phgdh-dependent L-serine biosynthesis in vivo, we generated Phgdh-deficient mice using targeted gene disruption in embryonic stem cells. The absence of Phgdh led to a drastic reduction of L-serine metabolites such as phosphatidyl-L-serine and sphingolipids. Phgdh null embryos have small bodies with abnormalities in selected tissues and died after days post-coitum 13.5. Striking abnormalities were evident in the central nervous system in which the Phgdh null mutation culminated in hypoplasia of the telencephalon, diencephalon, and mesencephalon; in particular, the olfactory bulbs, ganglionic eminence, and cerebellum appeared as indistinct structures. These observations demonstrate that the Phgdh-dependent phosphorylated pathway is essential for normal embryonic development, especially for brain morphogenesis. |