First Author | De Laurenzi V | Year | 2001 |
Journal | Mol Cell Biol | Volume | 21 |
Issue | 1 | Pages | 148-55 |
PubMed ID | 11113189 | Mgi Jnum | J:67573 |
Mgi Id | MGI:1930868 | Doi | 10.1128/MCB.21.1.148-155.2001 |
Citation | De Laurenzi V, et al. (2001) Gene disruption of tissue transglutaminase. Mol Cell Biol 21(1):148-55 |
abstractText | Transglutaminase 2 (TGase 2), or tissue transglutaminase, catalyzes either epsilon-(gamma-glutamyl)lysine or N(1), N(8)-(gamma-glutamyl)spermidine isopeptide bonds. TGase 2 expression has been associated with apoptosis, and it has been proposed that its activation should lead to the irreversible assembly of a cross-linked protein scaffold in dead cells. Thus, TGase 2-catalyzed protein polymerization contributes to the ultrastructural changes typical of dying apoptotic cells; it stabilizes the integrity of the apoptotic cells, preventing the release of harmful intracellular components into the extracellular space and, consequently, inflammation and scar formation. In order to perform a targeted disruption of the enzyme, we prepared a construct deleting part of exons 5 and 6, containing the active site, and intron 5. Complete absence of TGase 2 was demonstrated by reverse transcription-PCR and Western blot analysis. TGase activity measured on liver and thymus extracts showed, however, a minimal residual activity in TGase 2(-/-) mice. PCR analysis of mRNA extracted from the same tissues demonstrated that at least TGase 1 (normally present in the skin) is also expressed in these tissues and contributes to this residual activity. TGase 2(-/-) mice showed no major developmental abnormalities, and histological examination of the major organs appeared normal. Induction of apoptosis ex vivo in TGase 2(-/-) thymocytes (by CD95, dexamethasone, etoposide, and H(2)O(2)) and in vitro on TGase 2(-/-) mouse embryonal fibroblasts (by retinoids, UV, and H(2)O(2)) showed no significant differences. A reduction in cross-linked apoptotic bodies with a modestly increased release of lactate dehydrogenase has been detected in some cases. Together our results show that TGase 2 is not a crucial component of the main pathway of the apoptotic program. It is possible that the residual enzymatic activity, due to TGase 1 or redundancy of other still-unidentified TGases, can compensate for the lack of TGase 2. |