| First Author | Kawagoe K | Year | 1994 |
| Journal | Genomics | Volume | 23 |
| Issue | 3 | Pages | 566-74 |
| PubMed ID | 7851884 | Mgi Jnum | J:21101 |
| Mgi Id | MGI:69146 | Doi | 10.1006/geno.1994.1544 |
| Citation | Kawagoe K, et al. (1994) Molecular cloning of murine pig-a, a gene for GPI-anchor biosynthesis, and demonstration of interspecies conservation of its structure, function, and genetic locus. Genomics 23(3):566-74 |
| abstractText | Many membrane proteins are anchored to the cell membrane by glycosylphosphatidylinositol (GPI). The core structure and biosynthesis of the GPI anchor are well conserved in eukaryote cells. We previously cloned a human PIGA gene that participates in GPI anchor biosynthesis. We have now cloned complementary and genomic DNA of Pig-a, the murine homologue of PIGA, and compared its function and gene structure with those of PIGA. The deduced amino acid sequence of mouse PIG-A is 88% identical with that of human PIG-A. Transfection of Pig-a cDNA complemented the defects of both a PIG-A-deficient murine cell line and a PIG-A-deficient human cell line, demonstrating that functions of mouse and human PIG-A are conserved. Like human PIGA, the chromosomal Pig-a gene has six exons and spans approximately 16 kb. Moreover, Pig-a was mapped to X-F3/4, which is syntenic to human Xp22.1, where PIGA is located. Thus, murine Pig-a provides a good animal model to study paroxysmal nocturnal hemoglobinuria, a disease caused by a somatic mutation of PIGA. Database analysis demonstrated that a yeast gene, SPT14, is homologous to Pig-a and PIGA and that these genes are members of a glycosyltransferase gene family. |