|  Help  |  About  |  Contact Us

Protein Domain : Tyrosine-tRNA ligase, bacterial-type, type 2

Primary Identifier  IPR024108 Type  Family
Short Name  Tyr-tRNA-ligase_bac_2
description  Tyrosine-tRNA ligases (TyrRS; also known as Tyrosyl-tRNA synthetases) () are widely distributed, being found in archaea, bacteria and eukaryotes. TyrRS is a homodimer which attaches Tyr to the appropriate tRNA. TyrRS is a class I tRNA synthetases, so it aminoacylates the 2'-OH of the nucleotide at the 3' end of the tRNA. The core domain is based on the Rossman fold and is responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. It contains the class I characteristic 'HIGH' and 'KMSKS' motifs, which are involved in ATP binding. Studies have shown that the 'KMSKS' motif plays a role in the initial binding of tRNA(Tyr) to tyrosine-tRNA ligase [].Two main groups can be distinguished among tyrosine-tRNA ligase: one group contains bacterial and organellar eukaryotic proteins and the other archaeal and cytosolic eukaryotic proteins. This entry belongs to the first group and contains tyrosein-tRNA ligase classified as type 2.The aminoacyl-tRNA synthetases (also known as aminoacyl-tRNA ligases) catalyse the attachment of an amino acid to its cognate transfer RNA molecule in a highly specific two-step reaction [, ]. These proteins differ widely in size and oligomeric state, and have limited sequence homology []. The 20 aminoacyl-tRNA synthetases are divided into two classes, I and II. Class I aminoacyl-tRNA synthetases contain a characteristic Rossman fold catalytic domain and are mostly monomeric []. Class II aminoacyl-tRNA synthetases share an anti-parallel β-sheet fold flanked by α-helices [], and are mostly dimeric or multimeric, containing at least three conserved regions [, , ]. However, tRNA binding involves an α-helical structure that is conserved between class I and class II synthetases. In reactions catalysed by the class I aminoacyl-tRNA synthetases, the aminoacyl group is coupled to the 2'-hydroxyl of the tRNA, while, in class II reactions, the 3'-hydroxyl site is preferred. The synthetases specific for arginine, cysteine, glutamic acid, glutamine, isoleucine, leucine, methionine, tyrosine, tryptophan, valine, and some lysine synthetases (non-eukaryotic group) belong to class I synthetases. The synthetases specific for alanine, asparagine, aspartic acid, glycine, histidine, phenylalanine, proline, serine, threonine, and some lysine synthetases (non-archaeal group), belong to class-II synthetases. Based on their mode of binding to the tRNA acceptor stem, both classes of tRNA synthetases have been subdivided into three subclasses, designated 1a, 1b, 1c and 2a, 2b, 2c [].The class Ia aminoacyl-tRNA synthetases consist of the isoleucyl, methionyl, valyl, leucyl, cysteinyl, and arginyl-tRNA synthetases; the class Ib include the glutamyl and glutaminyl-tRNA synthetases, and the class Ic are the tyrosyl and tryptophanyl-tRNA synthetases [].

0 Child Features

1 Parent Features

0 Protein Domain Regions