Primary Identifier | IPR001269 | Type | Family |
Short Name | DUS_fam |
description | Dihydrouridine synthases (Dus) is a large family of flavoenzymes comprising eight subfamilies. They catalyse the NADPH-dependent synthesis of dihydrouridine, a modified base found in the D-loop of most tRNAs. Mainly, they contain two functional conserved domains, an N-terminal catalytic domain (TBD) adopting a TIM barrel fold and a unique C-terminal helical domain (HD) devoted to tRNA recognition. However, DUS2 is distinguished from its paralogues and its fungi orthologues by the acquisition of an additional domain, a double stranded RNA binding domain (dsRBD), which serves as the main tRNA binding module [, ]. Dus 1 () from Saccharomyces cerevisiae (Baker's yeast) acts on pre-tRNA-Phe, while Dus 2 () acts on pre-tRNA-Tyr and pre-tRNA-Leu. Dus 1 is active as a single subunit, requiring NADPH or NADH, and is stimulated by the presence of FAD []. Some family members may be targeted to the mitochondria and even have a role in mitochondria []. DUS3 (not included in this entry) contains an extra zinc finger N-terminal to the Dus domain. |