|  Help  |  About  |  Contact Us

Protein Domain : BH3-interacting domain death agonist

Primary Identifier  IPR010479 Type  Family
Short Name  BID
description  Bcl-2 proteins are central regulators of caspase activation, and play a key role in cell death by regulating the integrity of the mitochondrial and endoplasmic reticulum (ER) membranes []. At least 20 Bcl-2 proteins have been reported in mammals, and several others have been identified in viruses. Bcl-2 family proteins fall roughly into three subtypes, which either promote cell survival (anti-apoptotic) or trigger cell death (pro-apoptotic). All members contain at least one of four conserved motifs, termed Bcl-2 Homology (BH) domains. Bcl-2 subfamily proteins, which contain at least BH1 and BH2, promote cell survival by inhibiting the adapters needed for the activation of caspases.Pro-apoptotic members potentially exert their effects by displacing the adapters from the pro-survival proteins; these proteins belong either to the Bax subfamily, which contain BH1-BH3, or to the BH3 subfamily, which mostly only feature BH3 []. Thus, the balance between antagonistic family members is believed to play a role in determining cell fate. Members of the wider Bcl-2 family, which also includes Bcl-x, Bcl-w and Mcl-1, are described by their similarity to Bcl-2 protein, a member of the pro-survival Bcl-2 subfamily []. Full-length Bcl-2 proteins feature all four BH domains, seven α-helices, and a C-terminal hydrophobic motif that targets the protein to the outer mitochondrial membrane, ER and nuclear envelope. BID is a member of the Bcl-2 superfamily of proteins that are key regulators of programmed cell death, hence this family is related to the Apoptosis regulator Bcl-2 protein BH domain. BID is a pro-apoptotic member of the Bcl-2 superfamily and as such posses the ability to target intracellular membranes and contains the BH3 death domain. The activity of BID is regulated by a Caspase 8-mediated cleavage event, exposing the BH3 domain and significantly changing the surface charge and hydrophobicity, which causes a change of cellular localisation [].

0 Child Features

0 Parent Features

4 Protein Domain Regions