| Primary Identifier | IPR022667 | Type | Domain |
| Short Name | ForMFR_H4MPT_ForTrfase_N |
| description | Formylmethanofuran:tetrahyromethanopterin formyltransferase (Ftr) is involved in C1 metabolism in methanogenic archaea, sulphate-reducing archaea and methylotrophic bacteria. It catalyses the following reversible reaction:N-formylmethanofuran + 5,6,7,8-tetrahydromethanopterin = methanofuran + 5-formyl-5,6,7,8-tetrahydromethanopterinFtr from the thermophilic methanogen Methanopyrus kandleri (optimum growth temperature 98 degrees C) is a hyperthermophilic enzyme that is absolutely dependent on the presence of lyotropic salts for activity and thermostability. The crystal structure of Ftr, determined to a reveals a homotetramer composed essentially of two dimers. Each subunit is subdivided into two tightly associated lobes both consisting of a predominantly antiparallel beta sheet flanked by alpha helices forming an alpha/beta sandwich structure. The approximate location of the active site was detected in a region close to the dimer interface []. Ftr from the mesophilic methanogen Methanosarcina barkeri and the sulphate-reducing archaeon Archaeoglobus fulgidus have a similar structure [].In the methylotrophic bacterium Methylobacterium extorquens, Ftr interacts with three other polypeptides to form an Ftr/cyclohydrolase complex which catalyses the hydrolysis of formyl-tetrahydromethanopterin to formate during growth on C1 substrates [].This entry represents the ferredoxin-like Ftr N-terminal domain. |