Primary Identifier | IPR044436 | Type | Domain |
Short Name | SETD7_SET |
description | This entry represents the SET domain found in SETD7, an enzyme that specifically monomethylate Lys-4 of histone H3, thereby creating a specific tag for epigenetic transcriptional activation. Methylation of lysine residues in the N-terminal tails of histones is thought to represent an important component of the mechanism that regulates chromatin structure. SETD7 plays a central role in the transcriptional activation of genes such as collagenase and insulin. It is recruited by IPF1/PDX-1 to the insulin promoter, leading to activate transcription. SETD7 also has methyltransferase activity toward non-histone proteins, including TAF10 and p53/TP53. SETD7 monomethylates Lys-189 of TAF10, which increases the affinity of TAF10 for RNA polymerase II. SETD7 monomethylates Lys-372 of p53/TP53, which stabilises p53/TP53 and increases p53/TP53-mediated transcriptional activation [, ]. SETD7 also methylates non-histone proteins, including estrogen receptor alpha (ERa), suggesting it has a role in diverse biological processes. ERa methylation by Set7/9 stabilises ERa and activates its transcriptional activities, which are involved in the carcinogenesis of breast cancer. In a high-throughput screen, treatment of human breast cancer cells (MCF7 cells) with cyproheptadine, a Set7/9 inhibitor, decreased the expression and transcriptional activity of ERa, thereby inhibiting estrogen-dependent cell growth [, ].These enzymes contain a SET domain, which is necessary but not sufficient for histone methyltransferase activity []. Human SETD7 contains an N-terminal β-sheet domain in addition to the conserved SET domain []. Mutagenesis studies identified two residues in the C terminus of the protein that appear essential for catalytic activity toward lysine-4 of histone H3; cofactor AdoMet binds to this domain []. |