|  Help  |  About  |  Contact Us

Publication : Selenium mediates exercise-induced adult neurogenesis and reverses learning deficits induced by hippocampal injury and aging.

First Author  Leiter O Year  2022
Journal  Cell Metab Volume  34
Issue  3 Pages  408-423.e8
PubMed ID  35120590 Mgi Jnum  J:325707
Mgi Id  MGI:7286150 Doi  10.1016/j.cmet.2022.01.005
Citation  Leiter O, et al. (2022) Selenium mediates exercise-induced adult neurogenesis and reverses learning deficits induced by hippocampal injury and aging. Cell Metab 34(3):408-423.e8
abstractText  Although the neurogenesis-enhancing effects of exercise have been extensively studied, the molecular mechanisms underlying this response remain unclear. Here, we propose that this is mediated by the exercise-induced systemic release of the antioxidant selenium transport protein, selenoprotein P (SEPP1). Using knockout mouse models, we confirmed that SEPP1 and its receptor low-density lipoprotein receptor-related protein 8 (LRP8) are required for the exercise-induced increase in adult hippocampal neurogenesis. In vivo selenium infusion increased hippocampal neural precursor cell (NPC) proliferation and adult neurogenesis. Mimicking the effect of exercise through dietary selenium supplementation restored neurogenesis and reversed the cognitive decline associated with aging and hippocampal injury, suggesting potential therapeutic relevance. These results provide a molecular mechanism linking exercise-induced changes in the systemic environment to the activation of quiescent hippocampal NPCs and their subsequent recruitment into the neurogenic trajectory.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

12 Bio Entities

Trail: Publication

0 Expression