|  Help  |  About  |  Contact Us

Publication : Carbon-nanoparticle-triggered acute lung inflammation and its resolution are not altered in PPARγ-defective (P465L) mice.

First Author  Götz AA Year  2011
Journal  Part Fibre Toxicol Volume  8
Pages  28 PubMed ID  21933390
Mgi Jnum  J:185992 Mgi Id  MGI:5430709
Doi  10.1186/1743-8977-8-28 Citation  Gotz AA, et al. (2011) Carbon-nanoparticle-triggered acute lung inflammation and its resolution are not altered in PPARgamma-defective (P465L) mice. Part Fibre Toxicol 8:28
abstractText  BACKGROUND: The alveolar macrophage (AM) - first line of innate immune defence against pathogens and environmental irritants - constitutively expresses peroxisome-proliferator activated receptor gamma (PPARgamma). PPARgamma ligand-induced activation keeps the AM quiescent, and thereby contributes to combat invaders and resolve inflammation by augmenting the phagocytosis of apoptotic neutrophils and inhibiting an excessive expression of inflammatory genes. Because of these presumed anti-inflammatory functions of PPARgamma we tested the hypothesis, whether reduced functional receptor availability in mutant mice resulted in increased cellular and molecular inflammatory response during acute inflammation and/or in an impairment of its resolution. METHODS: To address this hypothesis we examined the effects of a carbon-nanoparticle (CNP) lung challenge, as surrogate for non-infectious environmental irritants, in a murine model carrying a dominant-negative point mutation in the ligand-binding domain of PPARgamma (P465L/wt). Animals were instilled intratracheally with Printex 90 CNPs and bronchoalveolar lavage (BAL) was gained 24 h or 72 h after instillation to investigate its cellular and protein composition. RESULTS: Higher BAL cell numbers - due to higher macrophage counts - were found in mutants irrespective of treatment. Neutrophil numbers in contrast were slightly lower in mutants. Intratracheal CNP instillation resulted in a profound recruitment of inflammatory neutrophils into the alveolus, but genotype related differences at acute inflammation (24 h) and resolution (72 h) were not observed. There were no signs for increased alveolar-capillary membrane damage or necrotic cell death in mutants as determined by BAL protein and lactate-dehydrogenase content. Pro-inflammatory macrophage-derived cytokine osteopontin was higher, but galectin-3 lower in female mutants. CXCL5 and lipocalin-2 markers, attributed to epithelial cell stimulation did not differ. CONCLUSIONS: Despite general genotype-related differences, we had to reject our hypothesis of an increased CNP induced lung inflammation and an impairment of its resolution in PPARgamma defective mice. Although earlier studies showed ligand-induced activation of nuclear receptor PPARgamma to promote resolution of lung inflammation, its reduced activity did not provide signs of resolution impairment in the settings investigated here.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression