|  Help  |  About  |  Contact Us

Publication : Mice with impaired extrathyroidal thyroxine to 3,5,3'-triiodothyronine conversion maintain normal serum 3,5,3'-triiodothyronine concentrations.

First Author  Christoffolete MA Year  2007
Journal  Endocrinology Volume  148
Issue  3 Pages  954-60
PubMed ID  17138654 Mgi Jnum  J:119238
Mgi Id  MGI:3701571 Doi  10.1210/en.2006-1042
Citation  Christoffolete MA, et al. (2007) Mice with impaired extrathyroidal thyroxine to 3,5,3'-triiodothyronine conversion maintain normal serum 3,5,3'-triiodothyronine concentrations. Endocrinology 148(3):954-60
abstractText  For T(3) to mediate its biological effects, the prohormone T(4) must be activated by removal of an outer-ring iodine by the type 1 or 2 deiodinases (D1 and D2) with approximately 60% of the daily T(3) production in rodents being produced extrathyroidally through this pathway. To further define the role of these enzymes in thyroid hormone homeostasis, we backcrossed the targeted disruption of the Dio2 gene into C3H/HeJ (C3H) mice with genetically low D1 expression to create the C3H-D2KO mouse. Remarkably, these mice maintain euthyroid serum T(3) levels with normal growth and no decrease in expression of hepatic T(3)-responsive genes. However, serum T(4) is increased 1.2-fold relative to the already elevated C3H levels, and serum TSH is increased 1.4-fold. Despite these increases, thyroidal (125)I uptake indicates no difference in thyroidal activity between C3H-D2KO and C3H mice. Although C3H-D2KO hepatic and renal D1 activities were well below those observed in wild-type mice (approximately 0.1-fold for both), they were 8-fold and 2-fold higher, respectively, relative to C3H mice. Thyroidal D1 and cerebral cortical type 3 deiodinase activity were unchanged between C3H-D2KO and C3H mice. In conclusion, C3H-D2KO mice have notably elevated serum T(4) levels, and this, in conjunction with residual D1 activity, is likely an important role in the maintenance of euthyroid serum T(3) concentrations.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression