|  Help  |  About  |  Contact Us

Publication : RANKL cytokine enhances TNF-induced osteoclastogenesis independently of TNF receptor associated factor (TRAF) 6 by degrading TRAF3 in osteoclast precursors.

First Author  Yao Z Year  2017
Journal  J Biol Chem Volume  292
Issue  24 Pages  10169-10179
PubMed ID  28438834 Mgi Jnum  J:246962
Mgi Id  MGI:5915339 Doi  10.1074/jbc.M116.771816
Citation  Yao Z, et al. (2017) RANKL cytokine enhances TNF-induced osteoclastogenesis independently of TNF receptor associated factor (TRAF) 6 by degrading TRAF3 in osteoclast precursors. J Biol Chem 292(24):10169-10179
abstractText  Cytokines, including receptor activator of nuclear factor kappaB ligand (RANKL) and TNF, induce increased osteoclast (OC) formation and bone loss in postmenopausal osteoporosis and inflammatory arthritides. RANKL and TNF can independently induce OC formation in vitro from WT OC precursors via TNF receptor-associated factor (TRAF) adaptor proteins, which bind to their receptors. Of these, only TRAF6 is required for RANKL-induced osteoclastogenesis in vitro However, the molecular mechanisms involved remain incompletely understood. Here we report that RANKL induced the formation of bone-resorbing OCs from TRAF6-/- OC precursors when cultured on bone slices but not on plastic. The mechanisms involved increased TNF production by TRAF6-/- OC precursors resulting from their interaction with bone matrix and release of active TGFbeta from the resorbed bone, coupled with RANKL-induced autophagolysosomal degradation of TRAF3, a known inhibitor of OC formation. Consistent with these findings, RANKL enhanced TNF-induced OC formation from TRAF6-/- OC precursors. Moreover, TNF induced significantly more OCs from mice with TRAF3 conditionally deleted in myeloid lineage cells, and it did not inhibit RANKL-induced OC formation from these cells. TRAF6-/- OC precursors that overexpressed TRAF3 or were treated with the autophagolysosome inhibitor chloroquine formed significantly fewer OCs in response to TNF alone or in combination with RANKL. We conclude that RANKL can enhance TNF-induced OC formation independently of TRAF6 by degrading TRAF3. These findings suggest that preventing TRAF3 degradation with drugs like chloroquine could reduce excessive OC formation in diseases in which bone resorption is increased in response to elevated production of these cytokines.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Authors

9 Bio Entities

Trail: Publication

0 Expression