|  Help  |  About  |  Contact Us

Publication : The mechanism underlying transient weakness in myotonia congenita.

First Author  Myers JH Year  2021
Journal  Elife Volume  10
PubMed ID  33904400 Mgi Jnum  J:310751
Mgi Id  MGI:6712076 Doi  10.7554/eLife.65691
Citation  Myers JH, et al. (2021) The mechanism underlying transient weakness in myotonia congenita. Elife 10:e65691
abstractText  In addition to the hallmark muscle stiffness, patients with recessive myotonia congenita (Becker disease) experience debilitating bouts of transient weakness that remain poorly understood despite years of study. We performed intracellular recordings from muscle of both genetic and pharmacologic mouse models of Becker disease to identify the mechanism underlying transient weakness. Our recordings reveal transient depolarizations (plateau potentials) of the membrane potential to -25 to -35 mV in the genetic and pharmacologic models of Becker disease. Both Na(+) and Ca(2+) currents contribute to plateau potentials. Na(+) persistent inward current (NaPIC) through NaV1.4 channels is the key trigger of plateau potentials and current through CaV1.1 Ca(2+) channels contributes to the duration of the plateau. Inhibiting NaPIC with ranolazine prevents the development of plateau potentials and eliminates transient weakness in vivo. These data suggest that targeting NaPIC may be an effective treatment to prevent transient weakness in myotonia congenita.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression