|  Help  |  About  |  Contact Us

Publication : Characterization of the glycinergic input to bipolar cells of the mouse retina.

First Author  Ivanova E Year  2006
Journal  Eur J Neurosci Volume  23
Issue  2 Pages  350-64
PubMed ID  16420443 Mgi Jnum  J:105396
Mgi Id  MGI:3614930 Doi  10.1111/j.1460-9568.2005.04557.x
Citation  Ivanova E, et al. (2006) Characterization of the glycinergic input to bipolar cells of the mouse retina. Eur J Neurosci 23(2):350-64
abstractText  Glycine and gamma-aminobutyric acid (GABA) are the major inhibitory transmitters of the mammalian retina, and bipolar cells receive GABAergic and glycinergic inhibition from multiple amacrine cell types. Here we evaluated the functional properties and subunit composition of glycine receptors (GlyRs) in bipolar cells. Patch-clamp recordings were performed from retinal slices of wild-type, GlyRalpha1-deficient (Glra1(spd-ot)) and GlyRalpha3-deficient (Glra3(-/-)) mice. Whole-cell currents following glycine application and spontaneous inhibitory postsynaptic currents (IPSCs) were analysed. During the recordings the cells were filled with Alexa 488 and, thus, unequivocally identified. Glycine-induced currents of bipolar cells were picrotoxinin-insensitive and thus represent heteromeric channels composed of alpha and beta subunits. Glycine-induced currents and IPSCs were absent from all bipolar cells of Glra1(spd-ot) mice, indicating that GlyRalpha1 is an essential subunit of bipolar cell GlyRs. By comparing IPSCs of bipolar cells in wild-type and Glra3(-/-) mice, no statistically significant differences were found. OFF-cone bipolar (CB) cells receive a strong glycinergic input from AII amacrine cells, that is preferentially based on the fast alpha1beta-containing channels (mean decay time constant tau = 5.9 +/- 1.4 ms). We did not observe glycinergic IPSCs in ON-CB cells and could elicit only small, if any, glycinergic currents. Rod bipolar cells receive a prominent glycinergic input that is mainly mediated by alpha1beta-containing channels (tau = 5.5 +/- 1.6 ms). Slow IPSCs, the characteristic of GlyRs containing the alpha2 subunit, were not observed in bipolar cells. Thus, different bipolar cell types receive kinetically fast glycinergic inputs, preferentially mediated by GlyRs composed of alpha1 and beta subunits.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression