|  Help  |  About  |  Contact Us

Publication : Reduced ornithine transcarbamylase activity does not impair ureagenesis in Otc(spf-ash) mice.

First Author  Marini JC Year  2006
Journal  J Nutr Volume  136
Issue  4 Pages  1017-20
PubMed ID  16549467 Mgi Jnum  J:112832
Mgi Id  MGI:3663815 Doi  10.1093/jn/136.4.1017
Citation  Marini JC, et al. (2006) Reduced ornithine transcarbamylase activity does not impair ureagenesis in Otc(spf-ash) mice. J Nutr 136(4):1017-20
abstractText  Mouse models for urea cycle disorders have been available for the past 30 y; however, until now, no measurements of urea production in vivo have been conducted. Urea entry rate was determined in Otc(spf-ash) and littermate controls employing a primed-continuous infusion of 15N15N urea. A saline infusion control, a complete mixture of amino acids (AA), or a glycine-alanine (GA) mixture was infused at 86 (AA1 and GA1) and 172 mg N.kg(-1).h(-1) (AA2 and GA2) to impose a defined nitrogen load on the urea cycle. Urea entry rate and plasma urea concentration increased (P < 0.001) as a consequence of the increase in the infusion rate of the complete mixture of amino acids, but the 2 genotypes did not differ (P = 0.96 and P = 0.44, respectively). The infusion of the GA mixture, however, decreased (P < 0.001) the plasma urea concentration and urea entry rate in Otc(spf-ash) mice compared with controls. At the highest level (GA2), urea entry rate was further depressed (P < 0.001), Otc(spf-ash) mice became hyperammonemic (1701 +/- 150 micromol/L), and hyperammonemic symptoms were evident. An acute hepatic enlargement (P < 0.001) was also evident in Otc(spf-ash) mice infused with GA2. These results show that despite vestigial OTC activity, Otc(spf-ash) mice were able to maintain ureagenesis at the same rate of control animals when a complete mixture of amino acids was infused. This implies that Otc(spf-ash) mice are able to dispose of ammonia, without apparent adverse effects, when a balance mixture of amino acids is provided, despite reduced enzyme activity.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Authors

3 Bio Entities

Trail: Publication

0 Expression