|  Help  |  About  |  Contact Us

Publication : O-GlcNAcylation disrupts STRA6-retinol signals in kidneys of diabetes.

First Author  Chen CH Year  2019
Journal  Biochim Biophys Acta Gen Subj Volume  1863
Issue  6 Pages  1059-1069
PubMed ID  30905621 Mgi Jnum  J:275503
Mgi Id  MGI:6303690 Doi  10.1016/j.bbagen.2019.03.014
Citation  Chen CH, et al. (2019) O-GlcNAcylation disrupts STRA6-retinol signals in kidneys of diabetes. Biochim Biophys Acta Gen Subj 1863(6):1059-1069
abstractText  BACKGROUND: O-GlcNAcylation is an important mechanism of diabetic complication. Retinoid homeostasis regulates cell-physiological functions through STRA6-retinol signaling. Therefore, we investigated whether O-GlcNAcylation disrupted STRA6-retinol signals in diabetes. METHODS: Immunoprecipitation and proximity ligation assay were used to investigate O-GlcNAcylation of STRA6-retinol signals in kidneys of db/db and ob/ob mice. Western blot and immunohistochemistry were done for STRA6/CRBP1/LRAT/RALDH1/RARs pathway, GFAT, OGT, TGFbeta1 and collagen 1 level. HPLC and ELISA for retinol, retinal, and retinoic acid concentrations were performed in vivo and vitro. RBP4 binding with STRA6 was measured in vitro. To verify whether O-GlcNAcylation disrupted STRA6-retinol signals, treatment of TMG and OSMI-1, transfection of OGA and OGT, and OGT siRNA were performed in HK-2 cells. RESULTS: STRA6 and RALDH1 were highly O-GlcNAc-modified in glomeruli and tubules of db/db and ob/ob mice. RBP4, p-Try, p-JAK2, and p-STAT5 on STRA6 immunoprecipitate were reduced. Cellular retinol signals (CRBP1, LRAT, ADH, retinol, retinal, RA, RARalpha, RARgamma and RXRalpha) remarkably decreased in kidneys of db/db, ob/ob mice and HG-cultured cells. TMG and OGT transfection induced O-GlcNAcylation of STRA6 and RALDH1, repressed RBP4-bound STRA6, and retinol signals in NG-cultured cells. OSMI-1, OGA transfection, and OGT silence reversed O-GlcNAc-modification of STRA6 and RALDH1, and rescued the decrease of retinol signals, and reversed the increase of TGFbeta1 and collagen 1 in HG-treated cells. CONCLUSIONS: O-GlcNAcylation significantly modified STRA6 and RALDH1, suppressed RBP4 binding activity, and disrupted retinol signals in the kidney of diabetes. GENERAL SIGNIFICANCE: This study first indicates that STRA6-retinol signals were directly disrupted by O-GlcNAcylation in diabetic kidney.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression