| First Author | Kämpfer H | Year | 2000 |
| Journal | Mol Med | Volume | 6 |
| Issue | 12 | Pages | 1016-27 |
| PubMed ID | 11474118 | Mgi Jnum | J:109870 |
| Mgi Id | MGI:3630046 | Citation | Kampfer H, et al. (2000) Lack of interferon-gamma production despite the presence of interleukin-18 during cutaneous wound healing. Mol Med 6(12):1016-27 |
| abstractText | BACKGROUND: Recently, we have reported a rapid and strong induction of interleukin-18 (IL-18) upon cutaneous injury in mice. In this paper, we investigated a possible role of IL-18 in triggering interferon-gamma (IFN-gamma) production at the wound site. MATERIALS AND METHODS: Expression of IFN-gamma during cutaneous wound healing was analyzed by RNase protection assay, Western blot, ELISA, and immunohistochemical techniques in a murine model of excisional skin repair. RESULTS: We could not detect any IFN-gamma mRNA and protein expression during normal skin repair. Additionally, impaired healing in the genetically diabetic db/db mouse, which was used as a model for a prolonged inflammatory phase of repair, was characterized by largely elevated levels of IL-18 during the late phase of repair and an absence of IFN-gamma. Western blot analysis for T-cell- and monocyte/macrophage-specific marker proteins (CD4, F4/80) clearly revealed the presence of these subsets of leukocytic cells at the wound site, that are known to produce IFN-gamma in response to IL-18. Furthermore, we provide evidence that the presence of transforming growth factor-beta1 (TGF-beta1) at the wound site might reflect a counterregulatory mechanism in IL-18-induced IFN-gamma production, as TGF-beta1 strongly suppressed IL-18/phytohaemagglutinin (PHA)-induced IFN-gamma production by peripheral blood mononuclear cells (PBMC) in vitro. CONCLUSIONS: Normal tissue regeneration processes after cutaneous injury were not dependent on the presence of IFN-gamma in vivo, and IL-18 must serve additional roles rather than inducing IFN-gamma during the healing process. |