First Author | Wang Y | Year | 2022 |
Journal | Exp Cell Res | Volume | 420 |
Issue | 1 | Pages | 113336 |
PubMed ID | 36058294 | Mgi Jnum | J:328545 |
Mgi Id | MGI:7336575 | Doi | 10.1016/j.yexcr.2022.113336 |
Citation | Wang Y, et al. (2022) MiR-34a-5p promotes hepatic gluconeogenesis by suppressing SIRT1 expression. Exp Cell Res 420(1):113336 |
abstractText | Elevated hepatic gluconeogenesis is a major contributor of fasting hyperglycemia in diabetes. MicroRNAs (miRNAs) are tightly linked to glucose metabolism, but their role in hepatic gluconeogenesis remains largely unkown. In this current study, miR-34a-5p expression was significantly increased in liver tissues of db/db mice. Overexpression of miR-34a-5p promoted hepatic glucose production in mouse primary hepatocytes with increased expressions of gluconeogenic genes while miR-34a-5p inhibition displayed a contrary action. MiR-34a-5p overexpression in mouse primary hepatocytes repressed SIRT1 expression. SIRT1 inhibition by EX527 blocked phosphoenolpyruvate carboxykinase (PEPCK) protein degradation and enhanced hepatic gluconeogenesis. Treatment of A485 (a CBP/p300 inhibitor) decreased miR-34a-5p and PEPCK expressions in the livers of db/db mice, but elevated SIRT1 protein expression. In mouse primary hepatocytes, A485 exhibited a similar result. Overexpression of miR-34a-5p attenuated A485-inhibited gluconeogenic gene expressions and A485-induced SIRT1 protein expression. Finally, after miR-34a-5p was inhibited in the livers of db/db mice, hepatic glucose production and gluconeogenic gene expressions were markedly lowered. Our findings highlight a critical role of miR-34a-5p in the regulation of hepatic gluconeogenesis and miR-34a-5p may be a potential target in the treatment of type 2 diabetes. |