|  Help  |  About  |  Contact Us

Publication : Comparison between surrogate indexes of insulin sensitivity and resistance and hyperinsulinemic euglycemic clamp estimates in mice.

First Author  Lee S Year  2008
Journal  Am J Physiol Endocrinol Metab Volume  294
Issue  2 Pages  E261-70
PubMed ID  18003716 Mgi Jnum  J:133294
Mgi Id  MGI:3778232 Doi  10.1152/ajpendo.00676.2007
Citation  Lee S, et al. (2008) Comparison between surrogate indexes of insulin sensitivity and resistance and hyperinsulinemic euglycemic clamp estimates in mice. Am J Physiol Endocrinol Metab 294(2):E261-70
abstractText  Insulin resistance contributes to the pathophysiology of diabetes, obesity, and their cardiovascular complications. Mouse models of these human diseases are useful for gaining insight into pathophysiological mechanisms. The reference standard for measuring insulin sensitivity in both humans and animals is the euglycemic glucose clamp. Many studies have compared surrogate indexes of insulin sensitivity and resistance with glucose clamp estimates in humans. However, regulation of metabolic physiology in humans and rodents differs and comparisons between surrogate indexes and the glucose clamp have not been directly evaluated in rodents previously. Therefore, in the present study, we compared glucose clamp-derived measures of insulin sensitivity (GIR and SI(Clamp)) with surrogate indexes, including quantitative insulin-sensitivity check index (QUICKI), homeostasis model assessment (HOMA), 1/HOMA, log(HOMA), and 1/fasting insulin, using data from 87 mice with a wide range of insulin sensitivities. We evaluated simple linear correlations and performed calibration model analyses to evaluate the predictive accuracy of each surrogate. All surrogate indexes tested were modestly correlated with both GIR and SI(Clamp). However, a stronger correlation between body weight per se and both GIR and SI(Clamp) was noted. Calibration analyses of surrogate indexes adjusted for body weight demonstrated improved predictive accuracy for GIR [e.g., R = 0.68, for QUICKI and log(HOMA)]. We conclude that linear correlations of surrogate indexes with clamp data and predictive accuracy of surrogate indexes in mice are not as substantial as in humans. This may reflect intrinsic differences between human and rodent physiology as well as increased technical difficulties in performing glucose clamps in mice.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

11 Bio Entities

Trail: Publication

0 Expression