|  Help  |  About  |  Contact Us

Publication : Mechanisms of Siglec-F-induced eosinophil apoptosis: a role for caspases but not for SHP-1, Src kinases, NADPH oxidase or reactive oxygen.

First Author  Mao H Year  2013
Journal  PLoS One Volume  8
Issue  6 Pages  e68143
PubMed ID  23840825 Mgi Jnum  J:204321
Mgi Id  MGI:5532248 Doi  10.1371/journal.pone.0068143
Citation  Mao H, et al. (2013) Mechanisms of Siglec-F-induced eosinophil apoptosis: a role for caspases but not for SHP-1, Src kinases, NADPH oxidase or reactive oxygen. PLoS One 8(6):e68143
abstractText  BACKGROUND: Siglec-F and Siglec-8 are functional paralog proapoptotic cell surface receptors expressed on mouse and human eosinophils, respectively. Whereas Siglec-8 mediated death involves caspases and/or reactive oxygen species (ROS) generation and mitochondrial injury, very little is known about Siglec-F-mediated signaling and apoptosis. Therefore the objective of the current experiments was to better define apoptosis pathways mediated by Siglec-F and Siglec-8. Given that Siglec-F-induced apoptosis is much less robust than Siglec-8-induced apoptosis, we hypothesized that mechanisms involved in cell death via these receptors would differ. METHODS: Consequences of engagement of Siglec-F on mouse eosinophils were studied by measuring ROS production, and by performing apoptosis assays using eosinophils from normal, hypereosinophilic, NADPH oxidase-deficient, src homology domain-containing protein tyrosine phosphatase (SHP)-1-deficient, and Lyn kinase-deficient mice. Inhibitors of caspase and Src family kinase activity were also used. RESULTS: Engagement of Siglec-F induced mouse eosinophil apoptosis that was modest in magnitude and dependent on caspase activity. There was no detectable ROS generation, or any role for ROS, NADPH oxidase, SHP-1, or Src family kinases in this apoptotic process. CONCLUSIONS: These data suggest that Siglec-F-mediated apoptosis is different in both magnitude and mechanisms when compared to published data on Siglec-8-mediated human eosinophil apoptosis. One likely implication of this work is that models targeting Siglec-F in vivo in mice may not provide identical mechanistic predictions for consequences of Siglec-8 targeting in vivo in humans.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

10 Bio Entities

Trail: Publication

0 Expression